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Independence



Learning Objectives

1. Understand the concepts of independence and dependence,
intuitively and mathematically.

2. Understand the concepts of mutual independence.

3. Understand the properties of independence and dependence.





Independence

▶ With conditional probabilities, we saw that sometimes knowing
an event B impacts our knowledge about A.

▶ When this does not happen, we say that A and B are
independent.

▶ Specifically, if P(A ∩ B) = P(A)P(B), then A and B are said to be
independent.

▶ If A and B are not independent, we say that they are dependent.
▶ We write A ⊥ B for independence, and A ̸⊥ B for dependence.
▶ If A ⊥ B, then P(A|B) = P(A).

▶ Intuitively, independence means that knowledge of A tells us
nothing of B (and vice versa).
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Mutual Independence
▶ If we have many events, A1, . . . , Ak we can define mutual

independence.

▶ The events are mutually independent, if, for every subset of
these events of every size between ℓ = 2 and ℓ = k ,

P(∩ℓ
j=1Aj) =

ℓ∏
j=1

P(Aj).

▶ That is, every subset of events requires the multiplicative
property.

▶ Note, if A ⊥ B and B ⊥ C , then it is not the case that A ⊥ C .

▶ Similarly, if A ⊥ B, B ⊥ C , and A ⊥ C , it may not be the case that
A, B, C are mutually independent.
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Mutually Exclusive

▶ If two events cannot happen simultaneously, we say that they
are mutually exclusive.

▶ Events which are mutually exclusive are always dependent.

▶ Why?
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Summary

▶ Independence codifies the idea that some events give no
information about one another.

▶ Independence can be defined through joint or conditional
probabilities.

▶ Independence implies independence of many derived quantities.

▶ Mutual independence is a stronger form of independence, when
many events exist.

▶ Mutually exclusive events are not independent.
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